patched overexpression alters wing disc size and pattern: transcriptional and post-transcriptional effects on hedgehog targets.

نویسندگان

  • R L Johnson
  • J K Grenier
  • M P Scott
چکیده

The membrane protein, Patched, plays a critical role in patterning embryonic and imaginal tissues in Drosophila. patched constitutively inactivates the transcription of target genes such as wingless, decapentaplegic, and patched itself. The secreted protein, Hedgehog, induces transcription of target genes by opposing the Patched signaling pathway. Using the Gal4 UAS system we have overexpressed patched in wing imaginal discs and found that high Patched levels, expressed in either normal or ectopic patterns, result in loss of wing vein patterning in both compartments centering at the anterior/posterior border. In addition, patched inhibits the formation of the mechanosensory neurons, the campaniform sensilla, in the wing blade. The patched wing vein phenotype is modulated by mutations in hedgehog and cubitus interruptus (ci). Patched overexpression inhibits transcription of patched and decapentaplegic and post-transcriptionally decreases the amount of Ci protein at the anterior/posterior boundary. In hedgehogMrt wing discs, which express ectopic hedgehog, Ci levels are correspondingly elevated, suggesting that hedgehog relieves patched repression of Ci accumulation. Protein kinase A also regulates Ci; protein kinase A mutant clones in the anterior compartment have increased levels of Ci protein. Thus patched influences wing disc patterning by decreasing Ci protein levels and inactivating hedgehog target genes in the anterior compartment.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Function of protein kinase A in hedgehog signal transduction and Drosophila imaginal disc development

Reduced protein kinase A (PKA) activity in anterior imaginal disc cells leads to cell-autonomous induction of decapentaplegic (dpp), wingless (wg), and patched (ptc) transcription that is independent of hedgehog (hh) gene activity. The resulting nonautonomous adult wing and leg pattern duplications are largely due to induced dpp and wg expression and resemble phenotypes elicited by ectopic hh e...

متن کامل

Expression of indian hedgehog, bone morphogenetic protein 6 and gli during skeletal morphogenesis1This work was presented in part at the 43rd Annual Meeting of the Orthopaedic Research Society, San Francisco, CA, February 1997.1

A complex signaling pathway involving members of the Hedgehog, Bone morphogenetic protein (Bmp) and Gli families regulates early patterning events in fetal skeletogenesis (Hui and Joyner, 1993. A mouse model of Greig cephalopolysyndactyly syndrome: the extra-toes mutation contains an intragenic deletion of the Gli3 gene. Nat. Genet. 3, 241–246; Bitgood and McMahon, 1995. Hedgehog and Bmp genes ...

متن کامل

polyhomeotic controls engrailed expression and the hedgehog signaling pathway in imaginal discs

Polycomb group (PcG) genes maintain cell identities during development in insects and mammals and their products are required in many developmental pathways. These include limb morphogenesis in Drosophila melanogaster, since PcG genes interact with identity and pattern specifying genes in imaginal discs and clones of polyhomeotic (ph) null cells induce abnormal limb patterning. Such clones are ...

متن کامل

The regulation of hedgehog and decapentaplegic during Drosophila eye imaginal disc development

The hedgehog signalling pathway is a conserved mechanism which acts in inductive processes in both vertebrate and invertebrate development to direct growth and patterning. In Drosophila, the secreted Hedgehog protein acts as a signal to induce non-autonomous activation in adjacent cells of either the decapentaplegic or wingless genes (both of which encode growth factor-like molecules), via inac...

متن کامل

Induction of Drosophila eye development by decapentaplegic.

The Drosophila decapentaplegic (dpp) gene, encoding a secreted protein of the transforming growth factor-beta (TGF-beta) superfamily, controls proliferation and patterning in diverse tissues, including the eye imaginal disc. Pattern formation in this tissue is initiated at the posterior edge and moves anteriorly as a wave; the front of this wave is called the morphogenetic furrow (MF). Dpp is r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Development

دوره 121 12  شماره 

صفحات  -

تاریخ انتشار 1995